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A br ief  review of the resul ts  of investigation of the stability of the ax isymmetr ica l  s t rains  
of elast ic shells of revolution is contained in [1, 2]. In [3] the problem was formulated and 
solved for a round shell, uniformly loaded along its hinged edge by a radial compress ive  
force .  Below, this problem is formulated for  an a rb i t r a ry  shell of revolution with a uni- 
formly  compressed  hinged edge. Results of its solution are  given for conical and spherical  
shells .  

w We cons ider  an a rb i t r a ry  shell of revolution, closed in a per ipheral  direction, and having a t l eas t  
one edge in an axial direction.  The following variable quantities are  introduced in an a rb i t r a ry  c ross  sec-  
tion of the middle surface of the shell (Fig. 1): x 1 is the coordinate in the direction of the meridian; 11 is 
the Lam4 p a r a m e t e r  of this direction; 0 is the angle between the axis of rotation and a normal  to the me-  
ridian; 12 is the radius of a paral lel  c i rc le .  The position of the axial c ross  section is determined by the 
per iphera l  coordinate x2, which is identified with the solar  angle in the plane of the paral le l  c i rcle ,  so that 
l 2 is the Lain6 p a r a m e t e r  of the axial direction.  The symbols k 1 and k 2 denote the normal  curvatures  of the 
coordinate axes x 1 and X2o 

The following is postulated: a) the shell is uniformly compressed  along one edge in such a way that 
the per iphera l  deformation at the edge e = const < 0 is known; b) the compressed  edge is free with respect  
to meridional  rotation and axial displacement and attached with respect  to per ipheral  displacement; c) the 
shell has a constant thickness h and is made of a l inear ly  elast ic homogeneous mater ia l  with the Young 
modulus E and the Poisson coefficient v. 

Let the radius of the compressed  edge be equal to b, and the angle of inclination of a normal  to the 
axis of rotation at it be equal to ft. 

The coordinates x 1 and x 2 are  the principal  coordinates of the strained middle surface.  They are  
taken as independent var iables .  The origin of the coordinate x~ is located at the compressed  edge (the 
direct ion of reckoning corresponding to Fig. 1 is negative), and of the coordinate x 2 at an a rb i t ra r i ly  se-  
lected meridian (direction of reckoning not significant). These same coordinates are  used as Lagrangian 
coordinates of points of the deformed surface.  

The following notation is introduced for the s t r e s s - s t r a i n  state of the shell: up u2, w are  the dis- 
p lacements  of a point of the middle surface in meridional,  per ipheral ,  and normal  directions,  respectively;  

Fig. 1 
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aij a r e  the components  of the tangential  s t ra in;  ~ij  a r e  the components  of the bending s t ra in;  Nij a r e  the 
tangential  s t r e s s e s ;  Qi a re  the in te rsec t ing  s t r e s s e s ;  P is the axial s t r e s s ;  Mij a r e  the specif ic  momen t s  
(the l a t t e r  subsc r ip t s  run through the values  1 and 2). 

The subcr i t ica l  s t r e s s - s t r a i n  s ta te  of the shell  under  cons idera t ion  will be a x i s y m m e t r i c a l  and 
local ized in the neighborhood of the c o m p r e s s e d  edge. Its k inemat ic  arid s t r e s s  c h a r a c t e r i s t i c s  a r e  de-  
noted by the index ~ 

If we introduce the constants  A = 1/Eh; D = Eh3/12 (1--v 2); B = ~ ;  C = A4"-A'~, then, in co r respondence  
with assumpt ion  c), the equations of the connection between the s t r e s s  c h a r a c t e r i s t i c s  and the components  
of the a x i s y m m e t r i c a l  s t r a in  a r e  wr i t ten  in the f o r m  

e22= A(-u vN~); M~ =D(•215 t~ -2 .  (1,1) 

Assuming that the a x i s y m m e t r i c a l  deformat ion  of a shell  with local  c o m p r e s s i o n  can be accompanied  
by s t rong bending of the mer id i an  of the middle  sur face ,  to de sc r ibe  it we use  the nonl inear  equations of 
E. R e i s s n e r  [4]. To this end we introduce the angle of ro ta t ion  v(xl) of the e lement  /ldxl during the p r o c e s s  
of a x i s y m m e t r i c a l  de format ion  and the s t r e s s  function ~ (xl), with an accu racy  up to a constant  fac tor  B, 
coinciding with the cor responding  function of E. R e i s s n e r .  

In the deformed posi t ion of an e lement ,  i ts  no rma l  will f o r m  with the axis of ro ta t ion  an angle equal 
to 0~ = 0(xl) +v(xi). The components  of the s t r a in  a r e  e x p r e s s e d  in t e r m s  of the function v using the 
fo rmulas  (pr imes  denote di f ferent ia t ion with r e spec t  to xl) 

l~• = v', I2• = sin 0 ~ - -  sin 0. 

Thanks to the absence  of su r face  loads,  the fo rmu la s  of E. Re i s sne r ,  express ing  the s t r e s s e s  in t e r m s  of 
the functions ~? and 0~ a re  s implif ied to the f o r m  

The equations of R e i s s n e r  es tab l i sh  a nonl inear  connection between the functions ~? and v. In the 
p r e sen t  case ,  they desc r ibe  the local  s t r a i n  in the neighborhood of the c o m p r e s s e d  edge of the shell  and 
can be s impl i f ied in accordance  with the asympto t ic  theory  of the edge effect.  To this end, we a s s u m e t h a t  

l,=]/'2Cb, 12(xl)~b, O(xl)~ 

and, in the s ta r t ing  equations,  we d i sca rd  t e r m s  with the natural  smal l  p a r a m e t e r ,  

~t=llib= Y 2C/b<<l. (1.2) 

As a resul t ,  we a r r i v e  at the following s y s t e m  of nonl inear  equations with r e spec t  to the functions ~ and v: 

~]"-l-2 sin [3 sin o-t-cos [3(t--cos ~)]=0; 
u"--2q(sin ~ cos v-}-cos 13 sin v)=O. (1.3) 

In accordm~ce with assumpt ions  a), b), the boundary conditions at the edge x 1 = 0 a r e  formula ted  in 
the f o r m  

~ , ( 0 )  = ~; M h ( 0 ) =  o. 

After  app rop r i a t e  s impl i f ica t ions ,  and a f t e r  introduction of the p a r a m e t e r  p =-e/p, these  conditions a s -  
sume the f o r m  

TI'(O) = - -2p ;  ,(0) =0. (1.4) 

To obtain a solution of the s y s t e m  (1.3) which is damped with increas ing  dis tance  f r o m  the edge, we r e -  
qui re  sa t i s fac t ion  of the following condit ions:  

~](--~)=0;  o(--cc) =0. (1.5) 

Equations (1.3), which can be called the equations of the nonl inear  edge effect,  along with the bound- 
a ry  conditions (1.4), (1.5), de sc r ibe  the nonl inear  local  a x i s y m m e t r i c a l  s t r a in  of an a r b i t r a r y  shell  of r e v o -  
lution, un i formly  c o m p r e s s e d  along a hinged edge. 

It mus t  be noted that, for  such a s impl i f ied  formula t ion  of the p rob lem,  the sa t i s fac t ion  of condition 
(1.2) is not sufficient,  s ince a t r ans i t ion  to the s y s t e m  (1.3) is poss ib le  with the supp lemen ta ry  l imi ta t ion  

[sin O:J>>fx , (1.6) 

919 



and the replacement  of the real  boundary conditions at the edge which is free of a load, by conditions (1.5), 
is possible if the distance between the edges considerably exceeds the value l l  = v t '~b .  

On the cont ra ry ,  the requi rement  of constancy of the thickness of the shell is superfluous.  ~t is suffi-  
cient to requi re  that the variabil i ty of the thickness not exceed the variabil i ty of the functions l 2 and 0. 
Then, without increas ing the e r r o r ,  the constant h can be identified with the thickness of the shell at the 
compressed  edge. 

w The possibi l i ty of instability of the ax isymmetr ica l  s t ra in  of a shell is connected with the presence  
of mixed unsymmetr ica l  fo rms  of equilibrium at the shell. For the increments  taken on by the kinematic 
and s t r e s s  cha rac te r i s t i c s  of the s t ra in  with a t ransi t ion f rom an ax isymmetr ica l  form of the equilibrium 
to a nonaxisymmetr ica l  form, we adopt the notation of Sec. 1. These increments  are  functions of the co-  
ordinates xt and x2; the dependence on the second coordinate is periodic.  

Taking account of the local cha rac t e r  of the nonaxisymmetr ica l  strain, the sys tem of equations of 
the stability can be taken in a simplified form, in accordance  with the theory of inclined shells.  

If we introduce the opera tors  (y = 12 l i )  

L I =  ---~ -:~, 

V ~ = L~ + L~, 

L~= z~ ~ + V r  , 

,( o, ~o~o o) 
L = ~ o ~  v o; ' 

the function v {x 1, x2), determining the increments  of the tangential s t r e s ses  in the form 

N m = - - B L l v ,  N I l = - - B L ~ v ,  N 2 1 = N l ~ = B L v ,  (2.1) 

and use the known formulas  of the theory  of inclined shells 

• ~ m  = - -  L ~ w ,  ~ l ~  = •  = - -  L w ;  (2.2) 
Q I :  D # D 0 

-- z--( az---~ V~w'  Q2 -- t~ oz~ V2w'  

then the sys tem of equation of the stability of the ax isymmetr ica l  equilibrium state is writ ten in the form 

cv2v~,  + (k~ + 4~) Llw + (kl + ~h) L~w = 0, 
c v ~ v ~ w -  (k~ + ~ )  LI~-  (k~ + ~1) L ~ -  ~ - '  (NkL~w + N~t.~w) = 0. 

After simplifications such as were made in See. 1, for the amplitude of Vn(X 0 and Wn(X 0 periodic along the 
coord ina tex  2 of the solution, we obtain the following sys tem of two ordinary differential equations: 

vI~ ' -- 27~v~ + 7%~ + 2  [bk~ow ~ - -  (bk~o + q~'/p).~2w,~] = 0; (2.3) 

~v 272w~ + ?4w, 2 [ bk2ov"n - -  (bk~o + qo' / p) ?2v~] + 2q (n' / p)?*w,~ O. W i t  - -  - -  

Here n is the number  of waves in a per iphera l  direction; 

q = - - d ~ ;  ?=~tn; k~o=k~ (0). (2.4) 

The boundary conditions for the increments ,  corresponding to assumptions a), b), a re  homogeneous 
and have the fo rm 

%~(0)=0; Mn(0)=0; P(0)=0; u~(0)=0. (2.5) 

For  nonaxisymmetr ica l  per turbat ions  being considered here,  the connecting equations of the form 
(1.1) must  be supplemented by the following equations, valid within the f ramework of the theory of inclined 
shells:  

s2~=(l+v)A T2a; M12= (t--v)D• t~2 .  

Using the connecting equations and formulas  (2.1), (2.2), the f i rs t  two of equalities (2.5) are  expressed 
in t e rms  of the functions v and w, adopting, for  their  amplitude, the simplified form 

and the equality 

is brought to the form 

! 1 O M l o \  ~- 
p ~ ,.'V n sin O= -- ~[OI 4- t--~- "';~z~-}~ / cos v ~ = 0 
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"~vn sin 0 ~ + -~- ~ [w~'-- (2 - -  v) "~'wn] cos 0 ~ = O. 

With sa t i s fac t ion  of the condition 

[cos 0~ ~ tsin 0~ (2.6) 

the equali ty P = 0, with the adopted degree  of accuracy ,  co r re sponds  to the equali ty v n = 0. It can be shown 
in a s i m i l a r  way that,  under  these  c i r c u m s t a n c e s ,  the equali ty u 2 co r r e sponds  to the equali ty w n = 0, Con- 
sequently,  with the l imi ta t ion (2.6), the equal i t ies  (2.5) give the following boundary conditions at the point 
x ,=  0 for  the s y s t e m  (2.3): 

v n ( 0 ) = 0 ;  wn(O)=O; v : ( 0 ) = 0 ;  w~(0)~-0. (2.7) 

At infinity, we requ i re  the sa t i s fac t ion  of the damping conditions 

, ~ ( -~ )=0 ;  w~(-~)=0;  ,~,(-~)=0; w:,(-~)=0. (2.8) 

We note that,  with condition (2.6), condition (1.6) is a lso  sat isf ied;  the re fo re ,  we can concern  ou r se lves  
only with the sa t i s fac t ion  of the f i r s t  of t hem.  

Equations (2.3) with the boundary conditions (2.7), (2.8) fo rmula te  the p rob l em of the s tabi l i ty  of the 
a x i s y m m e t r i c a l  s t r e s s - s t r a i n  s ta te  of the equi l ibr ium of an a r b i t r a r y  shell  of revolution,  uni formly  c o m -  
p r e s s e d  along a hinged edge. 

The solution of this p rob l em  depends on th ree  genera l ized  p a r a m e t e r s :  Y, P, q. As can be seen  
f r o m  (2.4), the p a r a m e t e r  q can de t e rmine  the value of the forced s t ra in  of the c o m p r e s s e d  edge. In this 
case ,  the p a r a m e t e r  p c h a r a c t e r i z e s  the th inness  of the wall of the  shell ,  s ince  p =pq, w h e r e / l  is the pa -  
r a m e t e r  of the th inness  of the wall (1.2). The p a r a m e t e r  Y mus t  be understood as the p a r a m e t e r  of the 
wave format ion ,  s ince y=Vn, where  n is the n u m b e r  of pe r iphe ra l  waves ,  fo rmed  with a loss  of the s t a -  
bi l i ty of the shell .  

With such an in te rpre ta t ion  of the p a r a m e t e r s ,  it becomes  evident that the determinat i (n  of the c r i t i -  
cal value of the forced pe r iphe ra l  s t r a in  of the edge of the shell  reduces  to the determinat ion,  with a given 
value of the p a r a m e t e r  p, of the s m a l l e s t  e igenvalue of the p a r a m e t e r  q with r e spec t  to T, f r o m  the homo- 
geneous boundary-va lue  p r o b l e m  for  the s y s t e m  (2.3). 

Star t ing f r o m  equali t ies  (1,3)-(1.5), it can be es tabl i shed that, with p -~0, the ra t ios  ~ / p  and v ' / p  
figuring in Eqs .  (2.3) tend toward values cor responding  to the l inea r  boundary-va lue  p rob l em of the axi-  
s y m m e t r i c a l  bending of a shell .  Consequently, with p = 0, the p r o b l e m  of the eigenvalues of (2.3), (2.7), 
(2.8) d e t e r m i n e s  the l imi t  of the s tabi l i ty  of a l inea r  a x i s y m m e t r i c a l  equi l ibr ium state ,  taking account  of 
its momen t  c h a r a c t e r .  But s ince f r o m  the equality p =0 the re  flows the equali ty ~=0  (since ~ 0 ) ,  we a r -  
r ive  at the conclusion that  the l inear  s t a tement  of the p rob l em is c o r r e c t  only fo r  an infinitely thin shell .  

w The p r o c e s s  of the solution of the p rob l em posed,  of the s tabi l i ty  of the a x i s y m m e t r i c a l  s t r a in  
of a shell  of revolution,  is divided into two consecut ive  s tages .  The f i r s t  s tage is the solution of the in- 
homogeneous boundary-va lue  p rob l em  posed in Sec. 1, descr ib ing  the nonl inear  local  a x i s y m m e t r i c  s t r a in  
of a shel l .  The second s tage is solution of the p r o b l e m  of eigenvatues posed in See. 2. 

The method used for  numer i ca l  solution of these  boundary-va lue  p r o b l e m s  is desc r ibed  in [3]. The 
pu rpose  of the numer i ca l  exper iment  was to inves t iga te  the dependence of the c r i t i ca l  value of the forced 
s t r a in  on the g e o m e t r i c  p a r a m e t e r s  of that pa r t  of the shell  which is adjacent  to the c o m p r e s s e d  edge. To 
this end, s tabi l i ty  calculat ions were  made of conical and spher ica l  shel ls ,  with the following th ree  values 
of the angle fl: 

~}1=~/2, ~=-~/3, [Ja=n/6. (3.1) 

F o r  eve ry  shell  with a given g e o m e t r y  of the middle  sur face ,  the dependence of the c r i t i ca l  value q* of the 
p a r a m e t e r  q on p, i .e.,  in the final ana lys t s ,  on tt, was de te rmined .  This dependence can be symbol ica l ly  
r e p r e s e n t e d  in the f o r m  q*=q*  (p) =q* (/~). 

Calculat ing for  p = 0, values  of q* (0) = q+, and the cor responding  values T + of the p a r a m e t e r  Y, a re  
given in Table 1. The~number of the column indicates  which of the values (3.1) of the anglefi  co r re sponds  
to the number s  in these  columns.  

In accordance  with the content of the l a s t  p a r a g r a p h  of Sec. 2, the values of q+ in Table  1 can be 
understood as c r i t i ca l  fo r  the l i nea r  a x i s y m m e t r i c a l  s t r a in  of a shel l .  The effect  of the nonl inear  cha r -  
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Fig.  2 Fig. 3 

ac t e r  of this s t r a in  on the value of q* is re f lec ted  in Figs .  2 and 3, using the graphical  dependence of the 
ra t io  e = q * / q  + on ~f#. The values of this ra t io  p rac t i ca l ly  coincide for  conical and spher ica l  shel ls ,  with 
an identical  angle ft. Each of the values of the angle fl (3.1) co r responds  to the curve  with the co r r e spond-  
ing number .  The change in the values  7* of the p a r a m e t e r  7 cor responding  to q* with a r i s e  in # can be 
judged f r o m  the n u m b e r  7 -  given in the l a s t  row of Table  1, which de te rmine  the values  of 7* with vr# = 0.4. 
With a change in the value of 4#  f r o m  0 to 0.4, the values of 7"  va ry  f r o m  7 + to 7- .  

The dependence on ~/~ of the c r i t i ca l  values v* of the angle of ro ta t ion  at the c o m p r e s s e d  edge is 
i l lus t ra ted  graphica l ly  in Fig. 3 (for conical  and s p h e r i c a l s h e l l s ,  the cu rves  coincide).  The values of v* 
which co r respond  to the dashed segments  of the curves  do not sa t i s fy  condition (2.6). Consequently, for  
shells  with an angle fl----~/2, it cannot be guaranteed  that, in the region 0.2 < ~f/~-< 0.4, the solution of the 
p r o b l e m  (2.3), (2.7), (2.8) will sa t i s fy  the init ial  boundary conditions (2.5) with the requi red  degree  of ac -  
curacy .  It mus t  be  regarded  as a fo rma l  solution. The dashed segments  of the curves  in Fig. 2 have the 
s a m e  fo rma l  meaning.  

The c r i t i ca l  values  of the forced (maximal) s t r a in  8* and the max imal  s t r e s s  (r* were  calculated 
using the fo rmulas  8*-- -eq+/ f i ;  ~* = Ee* .  

For  the shel ls  calculated,  the values of the p a r a m e t e r  q+ a re  de te rmined  using Table  1, and the 
values of the coefficient  e using the graphica l  dependences i l lus t ra ted  in Fig. 2. 
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