STABILITY OF NONLINEAR LOCAL AXISYMMETRICAL
STRAINS OF SHELLS OF REVOLUTION

L. . Shkutin UDC 539.4.012.1

A brief review of the results of investigation of the stability of the axisymmetrical strains
of elastic shells of revolution is contained in {1, 2]. In [3] the problem was formulated and
solved for a round shell, uniformly loaded along its hinged edge by a radial compressive
force. Below,thisproblem is formulated for an arbitrary shell of revolution with a uni-
formly compressed hinged edge. Results of its solution are given for conical and spherical
shells. ‘

§1. We consider an arbitrary shell of revolution, closed in a peripheral direction, and having atleast
one edge in an axial direction. The following variable quantities are introduced in an arbitrary cross sec-
tion of the middle surface of the shell (Fig, 1): x, is the coordinate in the direetion of the meridian; 1, is
the Lamé parameter of this direction; 6 is the angle between the axis of rotation and a normal to the me-
ridian; I, is the radius of a parallel circle. The position of the axial cross section is determined by the
peripheral coordinate x,, which is identified with the solar angle in the plane of the parallel circle, so that
1, is the Lamé parameter of the axial direction. The symbols k, and k, denote the normal curvatures of the
coordinate axes x; and x,,

The following is postulated: a) the shell is uniformly compressed along one edge in such a way that
the peripheral deformation at the edge &£ =const <0 is known; b) the compressed edge is free with respect
to meridional rotation and axial displacement and attached with respect to peripheral displacement; c) the
shell has a constant thickness h and is made of a linearly elastic homogeneous material with the Young
modulus E and the Poisson coefficient v.

Let the radius of the compressed edge be equal to b, and the angle of inclination of a normal to the
axis of rotation at it be equal to 8.

The coordinates x, and x, are the principal coordinates of the strained middle surface. They are
taken as independent variables. The origin of the coordinate x; is located at the compressed edge (the
direction of reckoning corresponding to Fig. 1 is negative), and of the coordinate x, at an arbitrarily se-
lected meridian (direction of reckoning not significant). These same coordinates are used as Lagrangian
coordinates of points of the deformed surface.

The following notation is introduced for the stress—strain state of the shell: u,, uy, w are the dis-
placements of a point of the middle surface in meridional, peripheral, and normal directions, respectively;

Fig. 1

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6,
pp. 98-103, November-December, 1975. Original article submitted February 4, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011, No part of this publication may be reproduced,
stored in a retrieval system, or fransmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for 315.00.

918



¢;; are the components of the tangential strain; %jj are the components of the bending strain; Njj are the
tangential stresses; Q; are the intersecting stresses; P is the axial stress; Mjj are the specific moments
(the latter subscripts run through the values 1 and 2).

The subcritical stress—strain state of the shell under consideration will be axisymmetrical and
localized in the neighborhood of the compressed edge. Its kinematic and stress characteristics are de~
noted by the index °.

If we introduce the constants A =1/Eh; D=Eh%/12(1~v%; B=VD/A; C=VAD, then, in correspondence
with assumption c), the equations of the connection between the stress characteristics and the components
of the axisymmetrical strain are written in the form

8;2 = A (1\’;2 — 'Vl\rzj); M;I =D (‘}’.;1 —]r V'A;g), 12« 2. (1'1)
Assuming that the axisymmetrical deformation of a shell with local compression can be accompanied

by strong bending of the meridian of the middle surface, to describe it we use the nonlinear equations of
E. Reissner [4]. To this end we introduce the angle of rotation v (x,) of the element [,dx; during the process

of axisymmetrical deformation and the stress function n(x,), with an accuracy up to a constant factor B,
coinciding with the corresponding function of E. Reissner.

In the deformed position of an element, its normal will form with the axis of rotation an angle equal
to 0°(x1) = 0(xy) +v(xy). The components of the strain are expressed in terms of the function v using the
formulas (primes denote differentiation with respect to x,)

Lixgg =0, Iywgs = sin@° —sin.
Thanks to the absence of surface loads, the formulas of E. Reissner, expressing the stresses in terms of
the functions 7n and 8°, are simplified to the form
I, No2 = BW, [;Ni; = Bneos8°, (,Q; = Bysin0°.
The equations of Reissner establish a nonlinear connection between the functions n and v. In the

present case, they describe the local strain in the neighborhood of the compressed edge of the shell and
can be simplified in accordance with the asymptotic theory of the edge effect. To this end, we assumethat

L=V2Cb, l{z)=b, B(z;)~p
and, in the starting equations, we discard terms with the natural small parameter,
w=nLIb=Y"2C/bk]1. (1.2)
As a result, we arvive at the following system of nonlinear equations with respect to the functions 1 andv:

1’42 sin B sin v+cos f(1—cos v)}=0;

v'—2n(sin § cos v-+cos B sin v)=0. (1.3)

In accordance with assumptions a), b), the boundary conditions at the edge x,=0 are formulated in
the form ‘

ea(0) =¢; M1 (0)=0.

After appropriate simplifications, and after introduction of the parameter p =—g/p, these conditions as-
sume the form

n'(0)=—2p; »(0)=0. (1.4)

To obtain a solution of the system (1.3) which is damped with increasing distance from the edge, we re-
quire satisfaction of the following conditions:

{—00)=0; v(—o0)==(0. (1.5)

Equations (1.3), which can be called the equations of the nonlinear edge effect, along with the bound-
ary conditions (1.4), (1.5}, describe the nonlinear local axisymmetrical strain of an arbitrary shell of revo-
lution, uniformly compressed along a hinged edge.

It must be noted that, for such a simplified formulation of the problem, the satisfaction of condition
(1.2) is not sufficient, since a transition to the system (1.3) is possible with the supplementary limitation

[sin 85>, (1.6)
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and the replacement of the real boundary conditions at the edge which is free of a load, by conditions (1.5),
is possible if the distance between the edges considerably exceeds the value 71=+v2Cb,

On the contrary, the requirement of constancy of the thickness of the shell is superfluous. It is suffi-
cient to require that the variability of the thickness not exceed the variability of the functions I, and 6.
Then, without increasing the error, the constant h can be identified with the thickness of the shell at the
compressed edge.

§2. The possibility of instability of the axisymmetrical strain of a shell is connected with the presence
of mixed unsymmetrical forms of equilibrium at the shell, For the increments taken on by the kinematic
and stress characteristics of the strain with a transition from an axisymmetrical form of the equilibrium
to a nonaxisymmetrical form, we adopt the notation of Sec. 1. These increments are functions of the co-
ordinates x, and x,; the dependence on the second coordinate is periodic.

Taking account of the local character of the nonaxisymmetrical strain, the system of equations of
the stability can be taken in a simplified form, in accordance with the theory of inclined shells.

if we introduce the operators y=1I, I;)

192 1 (3 il
Li=—%—s, L2:-—2—(——2-+ycose——),
12 952 I3 \ozg 9y
1 a2 cos 0 2
2. —— )
Vi=Li+L, L=+p (63:16362 v 0::2)’

the function v (x4, X,), determining the increments of the tangential stresses in the form
Ng=—BLw, Ny=—BLw, Nyy=Ny,=BLv, 2.1)

and use the known formulas of the theory of inclined shells

nyy = — Lyw, %y =—Lyw, Y12 = Uyt = — Luw; (2.2)
D 8 D b _,
O==7 5 Ve &= =75 Ve

then the system of equation of the stability of the axisymmetrical equilibrium state is written in the form
CV2V% + (ky 4+ %a2) Lyw + (by 4 wiy) Lyw = 0,
Cv2viw — (ky + /;2) Ly—(ky + %11) Lyp — B~ (NyLyw 4 NooLyw) = 0.
After simplifications such as were made in Sec. 1, for the amplitude of vy (x;) and wy, (x,) periodic along the
coordinate x, of the solution, we obtain the following system of two ordinary differential equations:
oY — 2927, + 10, + 2 [Bhygwh — (Bkye + qv'/p) Y] = 0; (2.3)
wh — 292wy, + Yown — 2 [bhygtn — (k1o + @0/ P) ¥70n] + 29 (W / p)Pw, = 0.
Here n is the number of waves in a peripheral direction;
g=—=elp% y=pn; ki =k; (O). (2.4)
The bouhdary conditions fdr the increments, corresponding to assumptions a), b), are homogeneous
and have the form
£92(0)=0; M1,(0)=0; P(0)=0; u,(0)=0. (2.5)
For nonaxisymmetrical perturbations being considered here, the connecting equations of the form
(1.1) must be supplemented by the following equations, valid within the framework of the theory of inclined

shells:
e =1+V)ATy; My=(1—v)Duy,, 122,

Using the connecting equations and formulas (2.1), (2.2), the first two of equalities (2.5) are expressed
in terms of the functions v and w, adopting, for their amplitude, the simplified form

Un = VY200 = 0;  wy — vy, =0,
and the equality

%H—'>cos 0" =20

12
Ly

- 1
P=N,sin6" —(Ql+72—

is brought to the form
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Ponsin8° 4+ -1t [ — (2— v) ¥wy] cos 67 = 0,

With satisfaction of the condition
|cos 8°] < Isin 6| (2.6)

the equality P=0, with the adopted degree of accuracy, corresponds to the equality v, =0. It can be shown
in a similar way that, under these circumstances, the equality u, corresponds to the equality w;, =0. Con-
sequently, with the limitation (2,6), the egualities (2.5) give the following boundary conditions at the point
x,=0 for the system (2.3):

va(0) = 0; wn(0)=0; v,(0)=0; w,(0)=0. 2.7)
At infinity, we require the satisfaction of the damping conditions
Vp(—00) =0; w,(—o0)=0; vp(—o00)=0 wy{—o0)=0. 2.8)

We note that, with condition (2.6), condition (1.6) is also satisfied; therefore, we can concern ourselves
only with the satisfaction of the first of them.

Equations (2.3) with the boundary conditions (2.7), (2.8) formulate the problem of the stability of the
axisymmetrical stress—strain state of the equilibrium of an arbitrary shell of revolution, uniformly com-
pressed along a hinged edge.

The solution of this problem depends on three generalized parameters: vy, p, 9. As can be seen
from (2.4), the parameter q can determine the value of the forced strain of the compressed edge. In this
case, the parameter p characterizes the thinness of the wall of the shell, since p=pq, where ¢ is the pa-
rameter of the thinness of the wall (1.2), The parameter v must be understood as the parameter of the
wave formation, since y=tm, where n is the number of peripheral waves, formed with a loss of the sta~
bility of the shell.

With such an interpretation of the parameters, it becomes evident that the determinatica of the criti-
cal value of the forced peripheral strain of the edge of the shell reduces to the determination, with a given
value of the parameter p, of the smallest eigenvalue of the parameter ¢ with respect to v, from the homo-
geneous boundary-value problem for the system (2.3).

Starting from equalities (1,3)~(1.5), it can be established that, with p —0, the ratios n'/p and v'/p
figuring in Eqgs. (2.3) tend toward values corresponding to the linear boundary-value problem of the axi-
symmetrical bending of a shell. Consequently, with p =0, the problem of the eigenvalues of (2.3), (2.7),
(2.8) determines the limit of the stability of a linear axisymmetrical equilibrium state, taking account of
its moment character. But since from the equality p =0 there flows the equality u=0 (since £#0), we ar-
rive at the conclusion that the linear statement of the problem is correct only for an infinitely thin shell,

§3. The process of the solution of the problem posed, of the stability of the axisymmetrical strain
of a shell of revoiution, is divided into two consecutive stages. The first stage is the solution of the in~
homogeneous boundary-value problem posed in Sec. 1, describing the nonlinear local axisymmetric strain
of a shell, The second stage is solution of the problem of eigenvalues posed in Sec. 2.

The method used for numerical solution of these boundary-value problems is deseribed in [3]. The
purpose of the nnmerical experiment was to investigate the dependence of the critical value of the forced
strain on the geometric parameters of that part of the shell which is adjacent to the compressed edge. To
this end, stability calculations were made of conical and spherical shells, with the following three values
of the angle 8:

Bi=a/2, Po=n/3, By=n/b. {3.1)

For every shell with a given geometry of the middle surface, the dependence of the critical value q* of the
parameter g on p, i.e., in the final analysis, on u, was determined. This dependence can be symbolically
represented in the form g*=q* () =q* (u).

Calculating for p = 0, values of 9* (0) = g™, and the corresponding values Y™ of the parameter v, are
given in Table 1, The number of the column indicates which of the values (3.1) of the angle 8 corresponds
to the numbers in these columns,

In accordance with the content of the last paragraph of Sec. 2, the values of q* in Table 1 can be
understood as critical for the linear axisymmetrical strain of a shell, The effect of the nonlinear char-
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Fig. 3

acter of this strain on the value of g* is reflected in Figs. 2 and 3, using the graphical dependence of the
ratio e=q*/q" on viu. The values of this ratio practically coincide for conical and spherical shells, with
an identical angle B. Each of the values of the angle 8 (3.1) corresponds to the curve with the correspond-
ing number. The change in the values v* of the parameter vy corresponding to q* with a rise in ¢ can be
judged from the number vy~ given in the last row of Table 1, which determine the values of y* with Vit =0.4.
With a change in the value of viu from 0 to 0.4, the values of y* vary from y+ tovy .

The dependence on v of the critical values v* of the angle of rotation at the compressed edge is
illustrated graphically in Fig. 3 (for conical and spherical shells, the curves coincide). The values of v*
which correspond to the dashed segments of the curves do not satisfy condition (2.6). Consequently, for
shells with an angle p=r/2, it cannot be guaranteed that, in the region 0.2 <Vu= 0.4, the solution of the
problem (2.3), (2.7), (2.8) will satisfy the initial boundary conditions (2.5) with the required degree of ac~
curacy. It must be regarded as a formal solution. The dashed segments of the curves in Fig. 2 have the
same formal meaning,

The critical values of the forced (maximal) strain £* and the maximal stress ¢* were calculated
using the formulas e*=—eqtpu? o* = Ee*,

For the shells calculated, the values of the parameter q+ are determined using Table 1, and the
values of the coefficient e using the graphical dependences illustrated in Fig. 2.
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